MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

Coordinator:

Partners:

MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

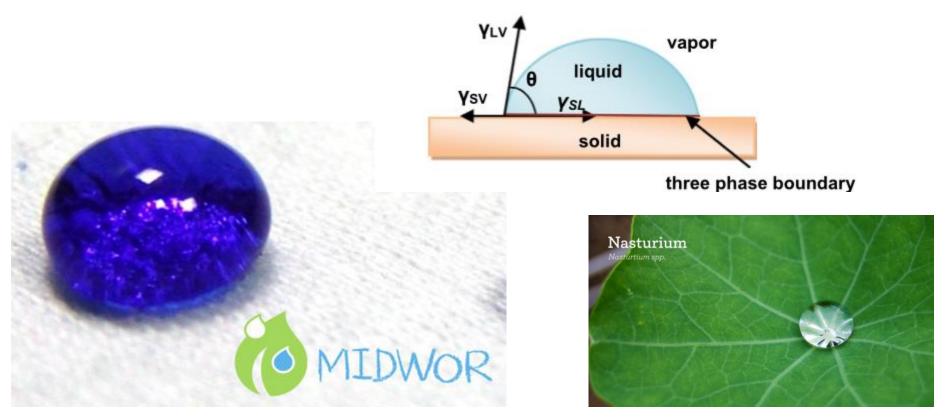
A review of the work done in Actions A1, A2 and B1

Jordi Mota Martí – <u>jmota@leitat.org</u> R&D – Advanced Materials Surface Technologies – Dyeing and Finihing

OBJECTIVE

The main objective of the MIDWOR-LIFE is **to mitigate the environmental, health and safety impacts of current** Durable Water and Oil Repellents **(DWOR)** and their alternatives **by analysing** their **environmental impact** and **technical performance** in order to assess manufacturers on the best available technologies to provide liquid repellency on textiles.

Policy recommendations will be set in order to promote the widespread implementation of the less toxic and most effective DWOR alternatives to fulfill REACH Regulation.


- Evaluate the environmental impact of current DWORs and their available alternatives.
- Evaluate the risks posed by current DWORs and their alternatives for human and environmental health.
- Evaluate the technical performance of DWORs alternatives and compare them to current DWORs.
- Elaborate a road map and policy recommendations.

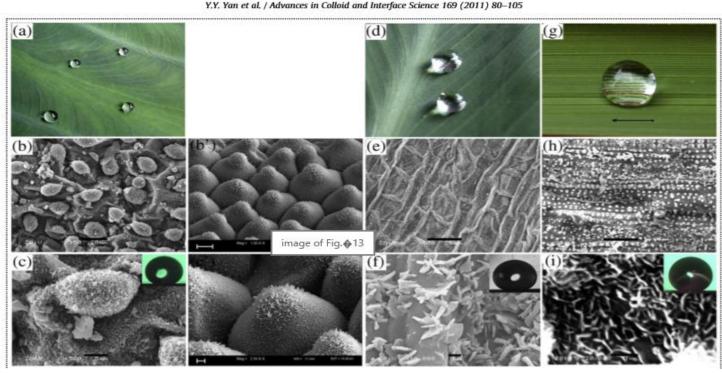
MIDWOR

THEORY

CONTACT ANGLE \rightarrow When a **droplet rests on a surface**, there is a **contact angle measured** at the edge of the droplet, and it can be **defined as the tangent angle of the liquid-vapor interface at the three phase boundary.** *E. Celia et al./Journal*

MIDWOR

THEORY


WETTING \rightarrow Wetting is the ability of a <u>liquid</u> to maintain contact with a <u>solid surface</u>, resulting from <u>intermolecular</u> interactions when the two are brought together. The wetting property of a material is determined by two intrinsic properties.

• Micro/Nano structure (roughness of the surface)

• Surface energy

Image of superhydrophobic surfaces (>140°). Different plant leaves

LOTUS LEAF EFFECT

THEORY OF OIL REPELLENT SURFACE

Surface free energy vs. Surface Tension: The target

In order to develop materials capable to show repellency to some liquid, we have to consider the surface free energy of that material, and the surface tension of the liquid we want to repel.

To achieve repellency, the surface free energy of the substrate should be lower than the surface tension of the liquid.

<u>Hydrophobicity</u>: water has a high surface tension **(72 mN/m)**. Therefore, surface free energy of the surface must be lower than **24-36 mN/m** for the fabrication of hydrophobic surface.

<u>Oleophobicity</u>: Surface tension of oils are usually between **20-30 mN/m**. So, the surface free energy of the substrate should be **lower than 20 mN/m**

FLOUROCARBONS (OR PERFLUORINATED CHEMICALS) SHOW LOW SURFACE ENERGIES. BELOW 20 mN/m AND THIS IS THE REASON WHY THEY ARE USED TO DEVELOP DURABLE WATER AND OIL REPELLENT SURFACES (DWOR)

MIDWOR-LIFE is a project co-funded by the European Community under the LIFE+ Financial Instrument within the axe Environment Policy and Governance and under the Grant Agreement n. LIFE14 ENV/ES/000670

MIDWOR

Main **environmental concern** raised by these DWORs is that its **fluorinated chains** may be **severed from the polymeric backbone,** <u>releasing perfluoroalkyl substances</u> (PFAs).

These substances will degrade to form highly persistent perfluoroalkyl acids (PFAAs) which are also bioacumulative. With Public Health England

PFOS and PFOA

Toxicological Overview

Key Points

Kinetics and metabolism

- · PFOS and PFOA are readily absorbed following ingestion
- · Following absorption PFOS and PFOA are mainly distributed to the serum and liver
- · Both are only very slowly eliminated from the body in humans

Health effects of acute exposure

- There are insufficient data available on acute toxicity in humans to draw conclusions
- · Dermal or ocular exposure to PFOS or PFOA may cause irritation
- Animal studies suggest both PFOS and PFOA are moderately toxic following ingestion, causing effects on the liver and gastrointestinal tract

Health effects of chronic exposure

- Toxic effects following repeated oral exposure includes effects on the liver, gastrointestinal and thyroid hormone effects
- Hepatotoxicity is the main effect reported in animals exposed to PFOS or PFOA via ingestion
- A small number of occupational studies have reported an association between exposure to PFOS or PFOA and several forms of cancer.
- Animals studies suggest that both PFOS and PFOA may be carcinogenic at relatively high dose levels

Animal studies indicate no marked effects on reproductive function nor development at levels below those producing maternal toxicity

MIDWOR-LIFE

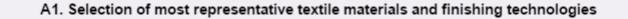
Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

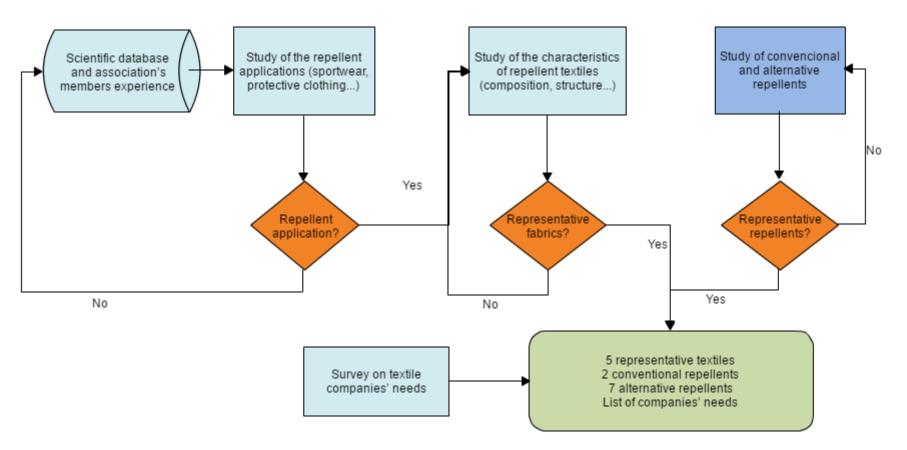
ACTION A

PREPARATORY ACTIONS

Presented by:

MIDWOR-LIFE


Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives


PREPARATORY ACTIONS

A1. Selection of most representative textile materials and finishing technologies

OBJECTIVE

To identify and select the different textile materials and finishing technologies and products which will be employed in the project. This action is divided in three tasks which are the textile material selection and the finishing technologies selection..

TASKS

Task A.1.1 Selection of textile materials

Study of the repellent products available on the market will be done determining their composition, weave structure and weight. In total, 5 fabrics' type will be selected.

Leader: AEI TÈXTILS Participants: CLUTEX, CS-POINTEX, LEITAT

Start: 1/09/2015

End: 31/03/2016

Expected results: 5 textile fabrics of different composition, structure and weight selected.

A1.2 Selection of finishing technologies

2 conventional finishing will be selected through a study of repellent finishing products available on the market .

7 alternative finishing products will be selected for their further technical, toxicological and ecotoxicological comparison with conventional products.

Leader: AEI TÈXTILS Participants: CLUTEX, CS-POINTEX, LEITAT

Start: 1/09/2015

End: 31/03/2016

Expected results: 2 conventional long chain fluorocarbon based repellent DWOR selected 7 alternative repellent products identified and selected

A1.3 Survey on textile companies

Survey of the needs of textile companies. Each cluster will develop the survey within their members.

Main information to be collected will be related to the use of DWOR products and their experience with different finishing processes.

Leader: AEI TÈXTILS Participants: CLUTEX, CS-POINTEX

Start: 1/09/2015

End: 31/03/2016

Expected results: List of companies' needs as a result of a survey to at least 60 companies

DONE (from month 1 to month 12)

- 1. Research on DWORs producers
- 2. Meetings/phone calls with DWORs producers.
- 3. Meetings/phone calls with finishers
- 4. Bibliographic research on repellent finishing's: papers, patents, etc.
- 5. Preparation of a questionnaire for companies (finishers, fabrics providers and DWORs producers:
- 6. Translation of the questionnaire: Spanish, Italian, Czech.
- 7. Creation of a database of finishers and DWORs producers in Spain, Italy and Czech Republic
- 8. Disseminate the questionnaire amongst finishers, fabrics providers and DWORs producers
- 9. Start the selection of current DWORs and alternatives
- 10. Report on the survey study results on textile companies
- 11. Submit Deliverable A1.1 and A1.2

Most representative finishing technologies

Num	Technology	Chemistry	Comments
1	CONVENTIONAL	Long Chain Fluorocarbon (c8)	-
2	CONVENTIONAL	Long Chain Fluorocarbon (c8)	-
3	ALTERNATIVE	Short Chain Fluorocarbon (c6)	PFOA-free
4	ALTERNATIVE	Short Chain Fluorocarbon (c6)	PFOA-free. Nano-dispesion of fluoropolymer
5	ALTERNATIVE	Short Chain Fluorocarbon (c6)	PFOA-free dendrimer and 3D hyperbranched polymer
6	ALTERNATIVE	Short Chain Fluorocarbon (c6)	PFOA-free
7A	ALTERNATIVE	SOL-GEL	SOL GEL without fluorine. PFOA- free
7B	ALTERNATIVE	Short Chain Fluorocarbon (c6)	PFOA-free
8	ALTERNATIVE	Hybrid fluor silicone	Structured coating: C6 + silicone
9	ALTERNATIVE	Silicone	Completely Fluor-free

Most representative sectors. And selection of fabrics.

FABRIC SELECTION BY TEXTILE REPRESENTATIVE SECTOR							
Number	weight	composition	Sector				
1	230 g/m²	100% PES	Automotive				
2	220 g/m ²	90% PA/10%El	Sport (cycling)				
3	195 g/m²	100% PES	Sport (mountain)				
4	180g/m ² 100% WO Fa		Fashion (suit)				
5	175g/m²	100% CO	Fashion (shirt)				
6	170g/ m²	65%PES/35%CO	Fashion (trouser)				
7	7 250 g/m ² 49%PP / 47%PES / 4%CO		Home (sofa)				
8	175g/m²	100% PES Workwear (pol					
9	250 g/m ²	80COP / 18%PES / 2%antistatic	Workwear (trouser)				

MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

PREPARATORY ACTIONS

A2. Pre-screening of functionality and environmental impact of DWOR

OBJECTIVE

To do a pre-screening of the technical performance and environmental impact of the selected DWOR repellents and their alternatives. <u>LEITAT is the leader of this action</u>.

TASKS

A2.1 Technical pre-screening of the repellent products

Study of the technical performance of DWOR selected on previous action. State of the art on values of hydrophobicity and oleophobicity (Spray Test, Drop test, oil test...). Search on TDS available, manufacturers contacts, information of finishers from clusters...

Leader: LEITAT Participants:

Start: 01/03/2016 End: 30/06/2016

Expected results: State of the art of hydrophobicity and oleophobicity values of 2 conventional and 7 alternatives of DWOR identified.

MIDWOR-LIFE is a project co-funded by the European Community under the LIFE+ Financial Instrument within the axe Environment Policy and Governance and under the Grant Agreement n. LIFE14 ENV/ES/000670

MIDWOR

A2.1 Technical pre-screening of the repellent products

Num	Technology	Company	Brand	Chemistry	Comments
1	CONVENTIONAL	RUDOLF	RUCOGUARD AFB CONC	Long Chain Fluorocarbon (c8)	-
2	CONVENTIONAL	PULCRA	REPELLAN® EPF-A	Long Chain Fluorocarbon (c8)	-
3	ALTERNATIVE	HUNTSMAN	PHOBOL CP-U	Short Chain Fluorocarbon (c6)	PFOA-free
4	ALTERNATIVE	ARCHROMA	NUVA N1811	Short Chain Fluorocarbon (c6)	PFOA-free. Nano-dispesion of fluoropolymer
5	ALTERNATIVE	RUDOLF	RUCOGUARD AFC6	Short Chain Fluorocarbon (c6)	PFOA-free dendrimer and 3D hyperbranched polymer
6	ALTERNATIVE	PULCRA	REPELLAN XC-6 PLUS	Short Chain Fluorocarbon (c6)	PFOA-free
7A	ALTERNATIVE	NANO-X	X-TEX EC5028	SOL-GEL	SOL GEL without fluorine. PFOA-free
7B	ALTERNATIVE	NANO-X	SILIXAN S570 – 10/w	Short Chain Fluorocarbon (c6)	PFOA-free
8	ALTERNATIVE	DAYKIN	UNIDYNE TG-5601	Hybrid fluor silicone	Structured coating: C6 + silicone
9	ALTERNATIVE	PROTEX	DRYOL S 600	Silicone	Completely Fluor-free

A2. Pre-screening of functionality and environmental impact of DWOR

Num	Brand	Application	Conditions	Oil repellency (AATCC)		Water repellency (AATCC)		Fabric substrates	
				В	А	В	А		
		Padding	40 g/L (with 50 g/L of Rucodry DHN) Drying: 130ºC / 4 min Polymerization: 160ºC /1.5 min	-	-	90	90	All	
1 R	RUCOGUARD AFB CONC	Padding	10 g/L (with HDMS and Phosphate) Drying: 100ºC / 10 min Polymerization: 160ºC / 1 min	8	8	100	100		
		Spraying Foaming Padding	20-30 g/L Drying: 120⁰C Polymerization: 170⁰C / 1 min	8	8	100	100	Cotton	
2	REPELLAN EPF-A	Coating	30-60 g/L Drying: 120℃ Polymerization: 150℃ / 3 min	8	8	100	100	PES	
3	PHOBOL CP-U	Padding	30-80 g/L	5	>3	90	>80	All	
4	NUVA N1811	Padding	30 g/L Polymerization: 165⁰C / 1 min	6	>4	100	>80		
5	RUCOGUARD AFC6	Padding	20-50 g/L	5	2 (3 wash.)	100	100 (3 wash.)	All	
6	REPELLAN XC-6 PLUS (data from ECO-100 brand)	Spraying Foaming Padding Coating	30-100 g/L Drying: 110ºC Polymerization: 150ºC / 3 min		ОК	100	70 (5 wash.)	Cellulosic, polyester, polyamide, wool and aramide fibres	
7B	SILIXAN S570 – 10/w	Spraying Padding Coating							
8	UNIDYNE TG-5601	Padding	20-80 g/L Drying: 110⁰C / 1-2 min Polymerization: 170ºC / 1-3min		6		100	Cotton	
9	DRYOL S 600	Padding	50-75 g/L Drying: 110⁰C /2 min Polymerization: 150⁰C / 1.5 min	No	oleoproof effect	100	90 (5 wash.)	PES Cotton	

A2.2 Environmental pre-screening of the repellent products

Review of the environmental impact of the selected DWOR products from a theoretical perspective, using different bibliographic sources such:

- Chemical databases
- Specific information from manufacturers.
- LCA databases
- Scientific publications related finishing products for textile sector.

This environmental pre-screening will help to develop the LCA of the selected DWOR products (Action B3) and also will give an idea of the main restriction the alternative products and conventional DWOR are submitted to.

 Leader: CETIM
 Start: 01/03/2016

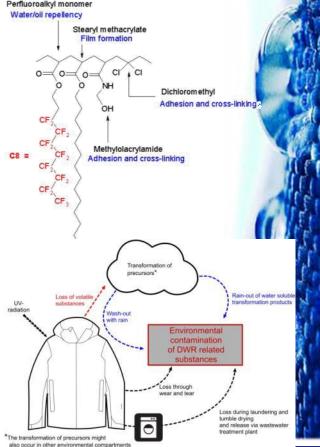
 Participants:
 End: 30/06/2016

Expected results: Public environmental data of the 2 conventional and 7 alternatives of DWOR identified.

State of the art of environmental data

Environmental pre-screening addressed in <u>4 groups</u>, based on its chemistry:

- 1. Conventional DWORs based on **long-chain fluorocarbon** (C8)
- 2. Alternative DWORs based on **short-chain fluorocarbon** (C6)
- 3. Alternative DWORs based in **SOL-GEL**
- 4. Alternative DWORs based in **Silicones**

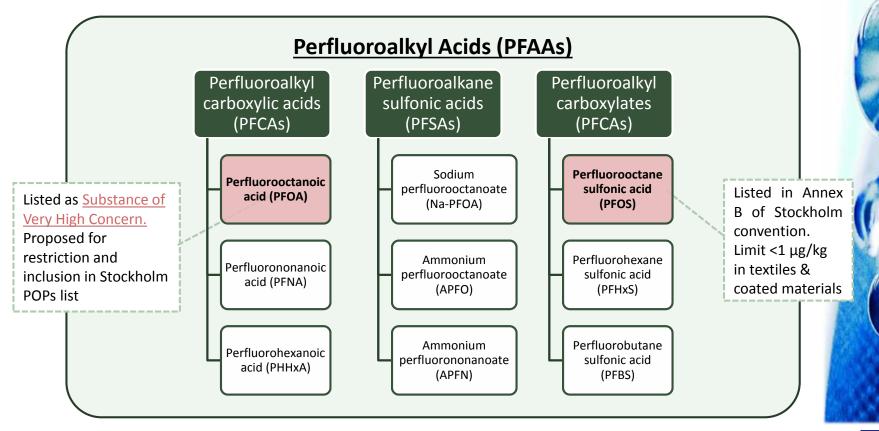

Conventional DWORs based on long-chain fluorocarbon (C8) – (I)

Main **environmental concern** raised by these DWORs is that its **fluorinated chains** may be **severed from the polymeric backbone**, <u>releasing perfluoroalkyl</u> <u>substances (PFAs)</u>.

Later these substances will **degrade to form highly persistent perfluoroalkyl acids (PFAAs).**

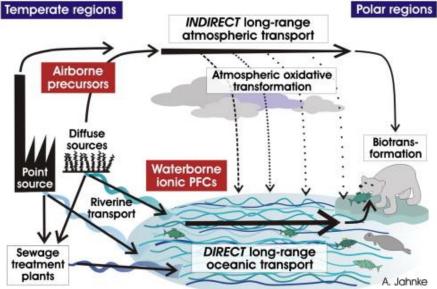
Three main sources of PFAs emissions related with the **textile industry**:

- <u>DWOR & perfluorocarbon (PFC)</u> manufacturing processes: Two main process, Electrochemical fluorination and Telomerisation.
- **DWOR application** in textile process: Due to the applying process (bath immersion and drying).
- Use & disposal of textile products: Considered a diffuse source which might account up to 85% of total fluorochemical emissions (450-2.700 t of PFOS between 1970-2002).



Conventional DWORs based on long-chain fluorocarbon (C8) – (II)

Among the different <u>perfluoroaklyl acids (PFAAs)</u>, two compounds are the most concerning and studied; Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonic acid (PFOS).



Conventional DWORs based on long-chain fluorocarbon (C8) – (III)

Stability of **C-F bond** is responsible for the **long-range transportation** properties of perfluorocarbon substances (PFCs) and also of the **bioaccumulation** along the food chain.

- C8-PFCs are <u>not degradable under aerobic or anaerobic conditions</u> (WWTP), <u>either</u> <u>by physical processes</u> in the environment (i.e. photolysis).
- PFCs have been detected in places far away from the emission sources (such the Arctic region). Unlike other POPs, detected compounds are mostly partially-degraded forms from comercial PFCs.
- Half-life degradation in the range of hundreds to thousands of years (depending on molecular weight).
- Water bodies and sediments are the main sink of PFCs. Fish are the main source of human exposition to PFCs
- PFCs are ubiquitously present in terrestrial top predator species (including humans).

MIDWOR-LIFE is a project co-funded by the European Community under the LIFE+ Financial Instrument within the axe Environment Policy and Governance and under the Grant Agreement n. LIFE14 ENV/ES/000670

MIDWOR

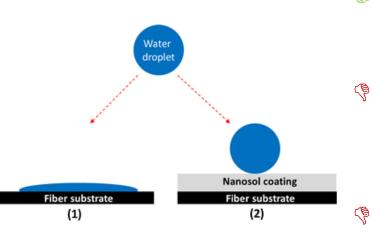
MIDWOR

Alternative DWORs (I): Short chain (C6) based DWORs

Most extended alternative to long chain PFCs since 2000s decade, due to its **superior performance** compared with other alternatives.

- Alternative DWORS based on C4 or C6 chemistry
- Degradation leads to the same families of compounds than C8-PFCs but with lower number of carbons. Most important are perfluorohexane sulfonic acid (PFHxS) & perfluorohexanoic acid (PFHxA)

Controversy regarding the risk of short chain PFCs. Still lack of toxicological and environmental data to draw clear conclusions.


- Lower toxicity than long chain PFCs
- Lower bioaccumulation & biomagnification across the food chain
- Lower half-lives and faster elimination rates.
- **Concerns due to its chemical similarity** with long-chain PFCs.
 - i.e: Some authors suggests than **PFHxS** has similar toxicity to PFOS/PFOA and might be considered as long chain precursors
 - i.e: Short-chain perfluoroalkane sulfonates (**PFAS**) have higher solubility, which leads to greater transportation potential in water bodies.

Alternative DWORs (II): SOL-GEL based DWORs

Overall **environmental impact** of sol-gel DWORs is considered **low** compared with perfluorocarbon-based DWORs (both long and short-chain).

- Different sol-gel based in the metallic oxide and sol precursors.
- Organosilicones are a wide used precursors of a sol.
- **Perfluorinated compounds** also have been used, in order to achieve ultrahydrophobic, oleophobic and soil repellent properties.

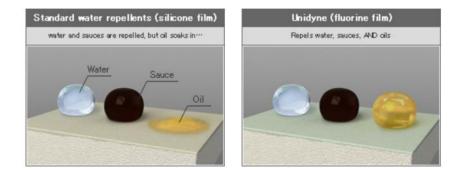
- SOL-GEL does not suppose any significant hazard to the environment or human health
- Only when <u>sol-gel</u> includes <u>perfluoroalkyl</u> compounds, might be considered harmful for the environment.
 - **Perfluorinated chains** can be severed from the sol-gel structure forming **persistent compounds.**

Alternative DWORs (III): Silicone based DWORs

Pointed out as one of the **most environmentally friendly alternatives** for achieving water repellency.

<u>Residual cyclic methyl siloxanes</u> are the main environmental hazard, mainly octamethylcyclotetrasiloxane (D4) & decamethylcyclopentasiloxane (D5):

- ? Still **controversy regarding its harmlessness** among the references consulted.
- Most of the reports suggests that they presents **no risk for humans or environment.**
- Levels in garments are very low, as residual silicone compounds evaporates at the curing stage of the textile process
- Degradation is the environment occurs fast (weeks in the atmosphere and days in soil)


MIDWOR

Alternative DWORs (III): Silicone based DWORs

<u>Perfluorosilicones</u> are a type of silicones where the methyl groups of the polydimethylsiloxane (PDMS) backbone have been replaced by **fluoroalkyl acrylate copolymers(usually C6-PFCs)** in order to improve its oil repellency.

- C6 perfluoroalkyl chains, which will eventually be released to the environment as the silicon backbone is degraded.
- Thus they must be considered as a source of perfluoroalkyl acids and other derived compounds, with risks addressed in previous slides
- Release of this compounds will be in lower amounts than short-chain DWORs

MIDWOR-LIFE is a project co-funded by the European Community under the LIFE+ Financial Instrument within the axe Environment Policy and Governance and under the Grant Agreement n. LIFE14 ENV/ES/000670

MIDWOR

Overall environmental impact of different DWORs

Environmental Impacts &	Type of DWOR							
Textile performance	Long Chain	Short Chain	SOL-GEL	Silicones	Perfluoro -silicones			
Textile performance								
Long range transportation	ŢŢ	J J			Ţ			
Toxicity (fauna & humans)	ŢŢ	₽?		€?	Ţ			
Bioaccumulation	ŢŢ	₽?			Ţ			
Degradation rates (environment and body)	99	∮?			Ţ			

MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

ACTION B

IMPLEMENTATION ACTIONS

Presented by:

MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

PREPARATORY ACTIONS

B1. Demonstration of DWOR and alternative material processing

OBJECTIVE

To perform the application trials at pre-industrial and at industrial scale. The textiles and chemicals selected during preparatory actions will be used. <u>LEITAT is the leader of this action</u>.

TASKS

B1.1 Pre industrial demonstration of DWOR and alternative material processing

On this task, the pre-industrial application of the selected DWOR and alternatives materials onto 5 textile materials previously selected in the preparatory action A1 will be performed.

Application by padding \rightarrow Padding parameters adjustment, 2 concentration per each DWOR

Leader: LEITAT Participants: AEI TEXTILS, CLUTEX, CS-POINTEX

Start: 1/03/2016 **End:** 1/03/2018

Expected result: 5 fabrics will be treated each with 9 DWOR finishing (2 conventional + 7 alternatives)

B1.2 Industrial demonstration of DWOR and alternative material processing

On this task, the industrial application of the selected DWOR and alternatives materials will be performed on 6 different pilot textile industries members of clusters AEI TEXTIL, CS-POINTEX and CLUTEX. The process operation and workers will be analyzed and observed during this task in order to evaluate the toxicological and ecotoxicological impact of the industrial process.

Leader: CS-POINTEX Participants: LEITAT, AEI TEXTILS, CLUTEX,

Start: 1/03/2016 **End:** 1/03/2018

Expected result: 6 fabrics treated with 7 repellent finishing (1 conventional and 6 alternative), at industrial scale in the manufacturing companies.

B1.3 Fabrics Characterization.

The objective of this task is to characterize the fabrics obtained at pre-industrial and industrial scales Some of the tests performed will be:

- Drop Test.
- Hydropbobicity test
- ■Oleophobicity test (EN ISO 14419) ✓
- ■Water Repellence: Spray Test (AATCC Test Method 22) ✓
- Water and oil contact angle measurement \checkmark

Leader: LEITAT Participants:

Start: 1/03/2016 **End:** 1/03/2018

Expected result: Characterization of the fabrics treated at pre-industrial and industrial scale..

B1.1 Pre industrial demonstration of DWOR and alternative material processing

FABRIC SELECTION BY TEXTILE REPRESENTATIVE SECTOR							
Number	weight	composition	Sector				
1	230 g/m ²	100% PES	Automotive				
2	220 g/m ²	90% PA/10%El	Sport (cycling)				
3	3 195 g/m ² 100% PES		Sport (mountain)				
4	180g/m²	100% WO	Fashion (suit)				
5	5 175g/m ²		Fashion (shirt)				
6	6 170g/m ² 65%PES/35%		Fashion (trouser)				
7	250 g/m²	49%PP / 47%PES / 4%CO	Home (sofa)				
8	175g/m²	100% PES	Workwear (polo)				
9	250 g/m²	m ² 80COP / 18%PES / Workwear (t 2%antistatic					

B1.1 Pre industrial demonstration of DWOR and alternative material processing

Num	Technology	Company	Brand	Chemistry	Reception
1	CONVENTIONAL	RUDOLF	RUCOGUARD AFB CONC	Long Chain Fluorocarbon (c8)	Sent
2	CONVENTIONAL	PULCRA	REPELLAN® EPF-A	Long Chain Fluorocarbon (c8)	Sent
3	ALTERNATIVE	HUNTSMAN	PHOBOL CP-U	Short Chain Fluorocarbon (c6)	Recived
4	ALTERNATIVE	ARCHROMA	NUVA N1811	Short Chain Fluorocarbon (c6)	No response First trials with Nuva N4547
5	ALTERNATIVE	RUDOLF	RUCOGUARD AFC6	Short Chain Fluorocarbon (c6)	Sent
6	ALTERNATIVE	PULCRA	REPELLAN XC-6 PLUS	Short Chain Fluorocarbon (c6)	Sent
7A	ALTERNATIVE	NANO-X	X-TEX EC5028	SOL-GEL	NOT available
7B	ALTERNATIVE	NANO-X	SILIXAN S570 – 10/w	Short Chain Fluorocarbon (c6)	Sent
8	ALTERNATIVE	DAYKIN	UNIDYNE TG-5601	Hybrid fluor silicone	Recived
9	ALTERNATIVE	PROTEX	DRYOL S 600	Silicone	Recived

- B1.1 Pre industrial demonstration of DWOR and alternative material processing
- Product #4: We've just started first trials with Nuva N4547 onto 100%WO fabric

	FORMULA						PADDING APLICATION			
PRODUCT	Components	%	g/I	ml/l	NOTAS	v (m/min)	pressure (bar)	Drying	Curing	
NUVA	NUVA N4547		70			2	2.5	120°C -	150° 2min	
N4547	acetic acid 60%			0,5	pH adjustment 4-5	3	3,5	1min	150° - 3min	

✓ Contact angle: From 90 ^O (non-treated) to 105^O (treated with Nuva N4547)
 ✓ Spray Test: From 70 (non-treated) to 80 (treated with Nuva N4547)
 ✓ Oil Test: Pending.

MIDWOR-LIFE is a project co-funded by the European Community under the LIFE+ Financial Instrument within the axe Environment Policy and Governance and under the Grant Agreement n. LIFE14 ENV/ES/000670

MIDWOR

B1.1 Pre industrial demonstration of DWOR and alternative material processing

• Product #9: Silicone-based from PROTEX

Exp.	Fabric		DRYOL FIX 146		рН	Drying	Curing	Pick-up	SPRAY TEST	OIL TEST
9.1.1	1	30	15	3	4,78	110ºC - 8 min	150ºC - 1,5 min	58,4%	3	0
9.1.2	1	60	30	3	4,78	110ºC - 8 min	150ºC- 1,5 min	52,7%	3-4	0
9.5.1	5	30	15	3	5,83	110ºC - 3 min	150ºC - 1,5 min	47,0%	4-5	0
9.5.2	5	60	30	3	5,83	110ºC - 3 min	150ºC - 1,5 min	45,0%	4-5	0

Interpretation of ISO index or rating of wettting equivalent to AATCC standard photographies

ISO 0	AATCC 0	Complete wetting of the top surface.
ISO 1	AATCC 50	Complete wetting of the top surface on the sprayed areas.
ISO 2	AATCC 70	Partial wetting of the top surface.
ISO 3	AATCC 80	Wetting of the top surface on the sprayed areas.
ISO 4	AATCC 90	Slight adherence or wetting of the top surface.
ISO 5	AATCC 100	No adherence or wetting of the top surface.

B1.2 Industrial demonstration of DWOR and alternative material processing

Some companies has shown interest in participating as a finisher.

- From Spain:
 - Vincolor \rightarrow In conversation
 - Hydrocolor \rightarrow ACCEPTED
- From Check Republic:
 - Nanomembrane \rightarrow In conversation
 - Inotex \rightarrow In conversation
- From Italy:
 - Biella Manifatture Tessili (Marzotto Group)→ACCEPTED
 - Tintoria Finissaggio 2000 →ACCEPTED

NEXT STEPS IN ACTION B1

- We are working doing the trials at lab scale as planed.
- Some providers have accepted to send us other finishing products under development (after signing a NDA), to validate technical performance and environmental profile.
- Define the processes to be scaled-up. Definition of which company will develop each process (depending facilities).
 - VINCOLOR will develop DWOR onto upholstery fabric.
- Arrange the industrial scale applications and measurements in-situ.
 - Depending on companies availability, it should be between March'17 to September'17
- Characterization of developed DWORS at industrial scale and comparison with lab trials.

MIDWOR

MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

IMPLEMENTATION ACTIONS

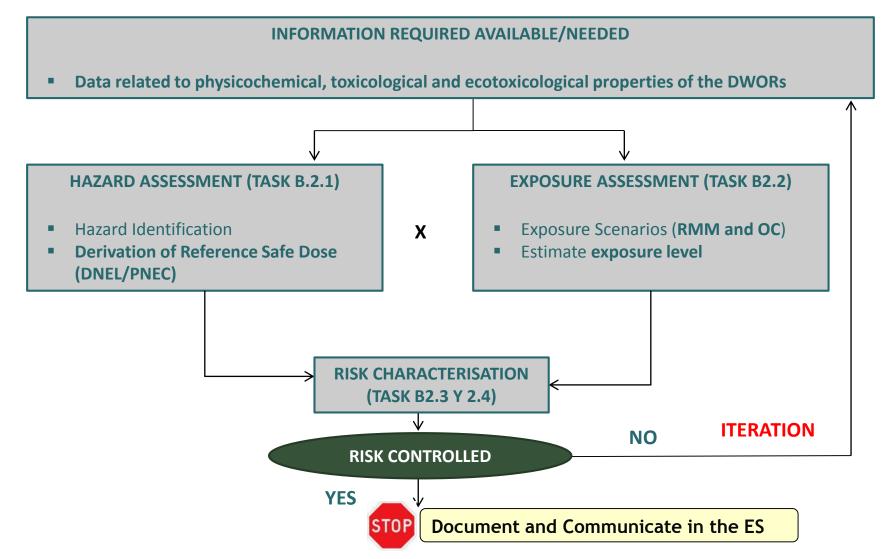
B2. Risk assessment of Durable Water and Oil Repellents in textile finishing process

B2. Risk assessment of Durable Water and Oil Repellents in textile finishing process

OBJECTIVES

The objective of this action is to **assess the risks** posed by DWORs additives and their alternatives **for human health and environment** when they are used as hydro- and oleo-repellent textile finishing products. These studies will be carried out in **all relevant exposure scenarios** in the textile finishing industry **at the different life cycle stages** (production, use and disposal). The risk analysis will include the following steps:

- 1. Identification of the hazards
- **2. Derivation of Reference Safe Dose**: Derivation of approximated DNEL/PNEC values (highest doses/concentrations at which no adverse effects are to be expected).
- 3. Exposure assessment
- 4. Characterization of the risks posed by DWORs additives at the different exposure scenarios.



MIDWOR

B2. Risk assessment of Durable Water and Oil Repellents in textile finishing process

MIDWOR

OVERVIEW OF THE RISK ASSESSMENT ANALYSIS

The iteration should continue until the Risk Characterization shows that the risks are controlled

MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

IMPLEMENTATION ACTIONS

B3. Comprehensive analysis of environmental impact of the best available technologies

Barcelona – September 27th, 2016

Objective of Action B3

Determine the **environmental impact of conventional and alternative DWOR finishing products** in the textile industry using Life Cycle Assessment (LCA) methodology

Leader: CETIM Participants: All partners Start: 1/03/2016 End: 31/08/2018

MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

ACTION C

MONITORING OF THE PROJECT IMPACT OF PROJECT ACTIONS

Presented by:

MIDWOR

Monitoring actions:

- Action C.1: Monitoring the project impacts on the environment
- Action C.2: Monitoring the socio-economic impact of the project on local economy and population.
- Action C.3: Monitoring the cost-efficient replicability or transferability of the project

Leader: LEITAT Participants: -

OBJECTIVE

To compare the environmental impact of the selected DWOR and their alternatives introduced in the textile finishing industry

TIMETABLE

Start: 01/01/2017 End: 31/08/2018

C1.1 Selection of the environmental monitoring indicators

- Use of resources
- Emissions (e.g. ozone depletion, Global Warming indicators, ...)
- Toxicity and ecotoxicity indicators

Environmental indicators selected will be aligned with the LCA indicators of Action B3

Area	Indicators from the LIFE program			
Environment	Chemicals released (PFOA) in tonnes/year at the end of the project			
& Health	Chemicals substitution in tonnes/year at the end of the project			

MIDWOR

- C1.2 Definition of the starting situation (baseline scenario)
 - Based on the results of the preparatory actions A1 and A2

MIDWOR

C1.3 Environmental monitoring

Leader: CS-POINTEX Participants: LEITAT, CLUTEX

OBJECTIVE

To evaluate the socioeconomic impact expected on local economy and community by the implementation of the proposed WOR alternatives and the related environmental and risk assessment measures into EU textile finishing industry.

Start: 01/01/2017 End: 31/08/2018

Definition of socioeconomic indicators:

Area	Indicators from the LIFE program	Target by the end of the project
	N ^o of distinct individuals that visit the project website	3000
Information and	Nº of scientific publications prepared (Action D4)	2
awareness raising of	Nº of international events attended (Action D4)	7
the general public	N ^o of project panels/notice boards, displayed (Action D2)	7
	N ^o of individuals surveyed regarding awareness of the environmental problem addressed (Action A1)	60
Capacity building	N ^o of professionals reached in networking activities (Action D5)	20
	Nº of relevant projects contacted (Action D5)	10
Jobs	s Nº of fully employed persons associated to MIDWOR project (in partners staff and subcontractors)	

Leader: LEITAT Participants: -

OBJECTIVE

Economic evaluation of the application of DWOR alternatives in order to ensure the cost-efficient replicability or transferability of the project.

Start: 01/01/2016 End: 31/08/2018

Main **cost categories** from every life stage will be assessed including:

- investment
- operation
- maintenance
- end-of-life disposal expenses
- External environmental costs

Based on Life Cycle Costing Methodology (LCC)

LCC will analyze the direct and indirect cost and benefits of the project in order to evaluate the global economic sustainability.

Area	Indicators from the LIFE program		
Contribution to economic growth	Total project related expenditure during the project (personnel costs, travel expenses, equipment,)		
	New sectors from the NACE code list where the project results are expected to be replicated/transferred.		

WHAT WILL WE DO WITH RESULTS OBAINED?

The results obtained in the project will be transferred to the industry to improve the knowledge on the use of DWOR's, through:

• WORKSHOPS,

Collaborating updating and maintaining ECOTEXNANO TOOL
 OCOLOX
 (http://www.life-ecotexnano.eu/)

- Doing police recommendations
- Developing a ROAD MAP for the use of non-toxic DWOR's in textile industry, or mitigate their use
- Suggest the most promising research lines

The textile industry will improve they knowledge by knowing the results obtained per each particular case studied (different chemistry, fabrics, scenarios...), in terms of:

- Technical performance, and costs of implementation
- Human and environmetal riskk
- LCA

MIDWOR-LIFE

Mitigation of environmental impact caused by DWOR textile finishing chemicals studying their non-toxic alternatives

http://www.midwor-life.eu/

THANK YOU FOR YOUR ATTENTION!

Jordi Mota Martí R&D Researcher at LEITAT TECHNOLOGICAL CENTER jmota@leitat.org

