

Casi di successo: progetti LIFE per il Tessile (MIDWOR-LIFE e LIFE-FLAREX)

Paola Fontana Polo Innovazione Tessile - Città Studi Biella

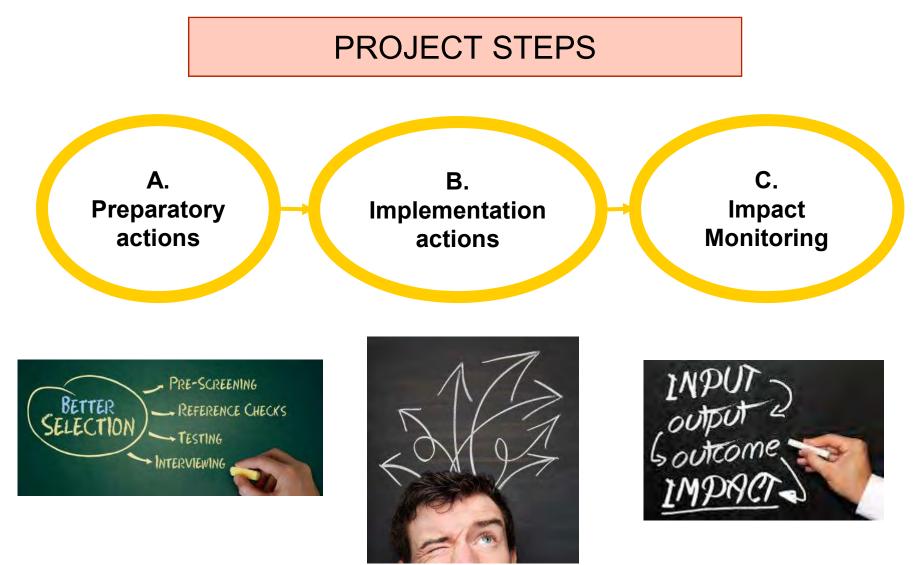
Biella, 9 maggio 2018

I due progetti: MIDWOR e FLAREX

MIDWOR

Riduzione dell'impatto ambientale causato NOR dai DWOR (prodotti <u>idro-oleo repellenti</u>), utilizzati nel finissaggio tessile, utilizzando alternative non tossiche.

Riduzione dell'impatto ambientale causato dai prodotti <u>ritardanti di fiamma</u> utilizzati nel finissaggio tessile



Punti in comune: Partenariato

	Midwor	Flarex
<u>Centri tecnologici:</u>		
- LEITAT (Spagna – Catalonia)	Х	Х
- IQAC Institute of Advanced Chemistry of Catalonia	Х	Х
- Centexbel (Belgio)		Х
 Fundación CETIM (Spagna – Galizia) 	Х	
<u>Poli tessili:</u>		
 AEI Textils (Spagna – Catalonia) 	Х	Х
- Ateval (Spagna – Valencia)		Х
 Clutex (Repubblica Ceca) 	Х	Х
- Pointex	Х	Х

Punti in comune: Struttura del progetto

Punti in comune: Struttura del progetto

Preparatory and implementation actions

Selection of chemicals and fabrics

With the participation of industrial SME several chemicals and alternatives will be selected for pre-screening of functionality and environmental impact on several fabrics

Industrial demonstration

Material processing will be tested using the selected chemicals under preindustrial and industrial conditions involving manufacturing SMEs through workshops and on-site pilots

Selection of textiles and finishing, demonstration of alternative products and workshops, risk assessment, LCA & roadmap

Punti in comune: Struttura del progetto

Impact monitoring

Risk assesment

Monitoring

Recommendations

Exposure Toxicity Environmental assessment Life-cycle assessment Environmnetal impact Socioeconomic impact Stakeholder engagement Best practices Policy recommendations REACH annexes proposals

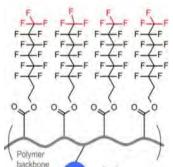
Policy recommendations, impact monitoring on environmental, socio-economic and cost efficient replicability

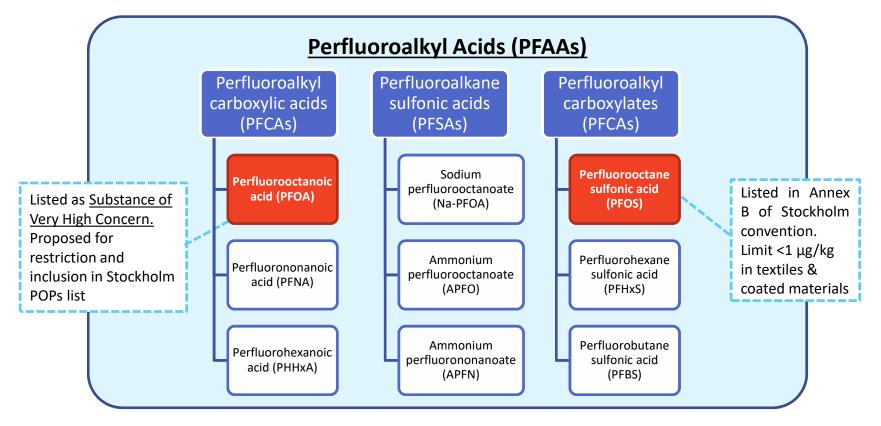


Mitigation of environmental impact caused by DWOR (Durable Water and Oil Repellents) textile finishing chemicals studying their nontoxic alternatives

DWOR: Durable Water and Oil Repellents

Chemical products used in the textile finishing industry to provide water and oil repellency in fabrics

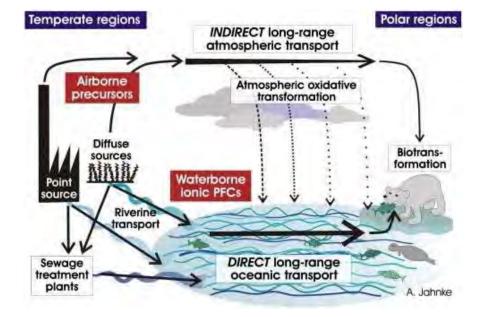




Conventional DWORs based on long-chain fluorocarbon (C8)

Main **environmental concern** raised by these DWORs is that its **fluorinated chains** may be **severed from the polymeric backbone**, <u>releasing</u> <u>perfluoroalkyl substances (PFAs)</u> that degrade to <u>perfluoroaklyl acids (PFAAs)</u>

Among the different <u>PFAAs</u>, two compounds are the most concerning and studied: Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonic acid (PFOS).



Persistent and bioaccumulative chemicals represent a high-risk to both the ecosystem and humans

Let's make a more sustainable world

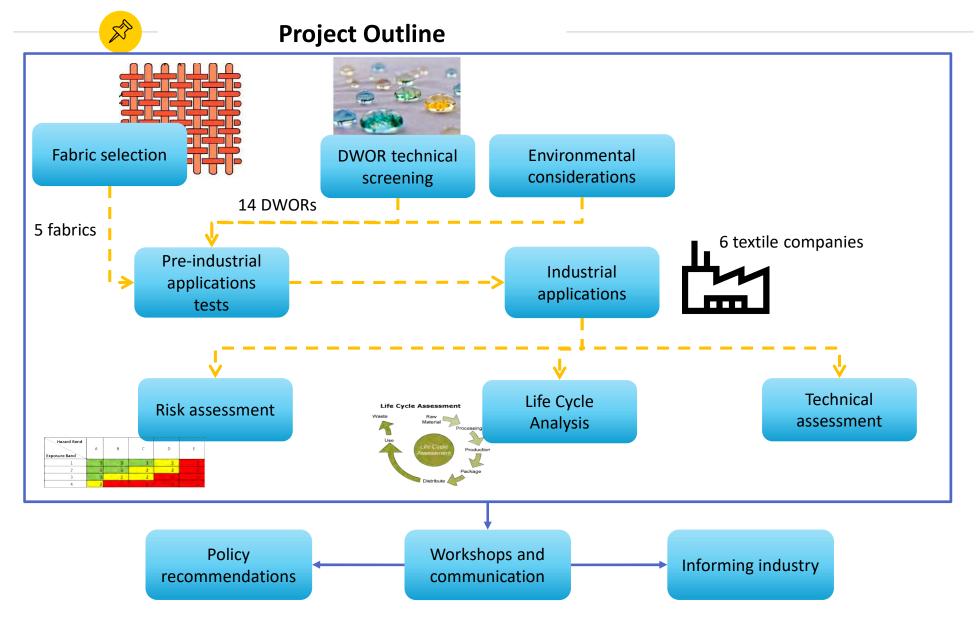
The project is studying how the environmental impact of DWORs can be mitigated by using non-toxic alternatives

Aims and objetives

Aims:

- To evaluate the environmental impact of current DWORs and their alternatives
- To evaluate the risks posed to human and environmental health
- To compare the technical performance between current and alternative DWORs

REDUCE OF THE EMISSION AND EXPOSITION TO TOXIC COMPOUNDS DERIVED FROM THE USE OF DWORS

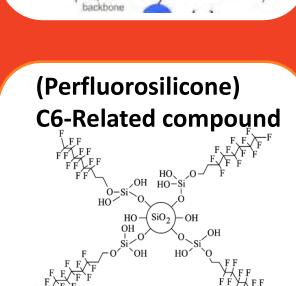


Partners

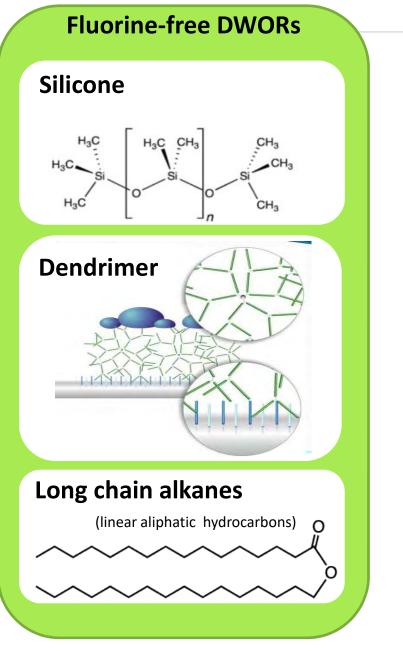
1

Textile applications and fabrics

DWOR finishing products selected Dendrimer **C8** Hyper branched polymers **Alkyl urethane** Acrylic- perfluoroalkylcopolymer **Paraffin: C**8 Polyethylene and Perfluoro acrylic copolymer amiloplast wax **C6** Silicone Fluoroacrylate copolymer PFSi **C6** Fluoroacrylate copolymer Perfluorosilicone (sol-gel) **C6 PFSi** Perfluoro acrylic copolymer Hybrid fluor silicone (C6) **C6 C6** C6 Perfluoroalkylpolyacrylate Perfluoroalkylpolyacrylate Fluoralkyl acrylate copolymer 16

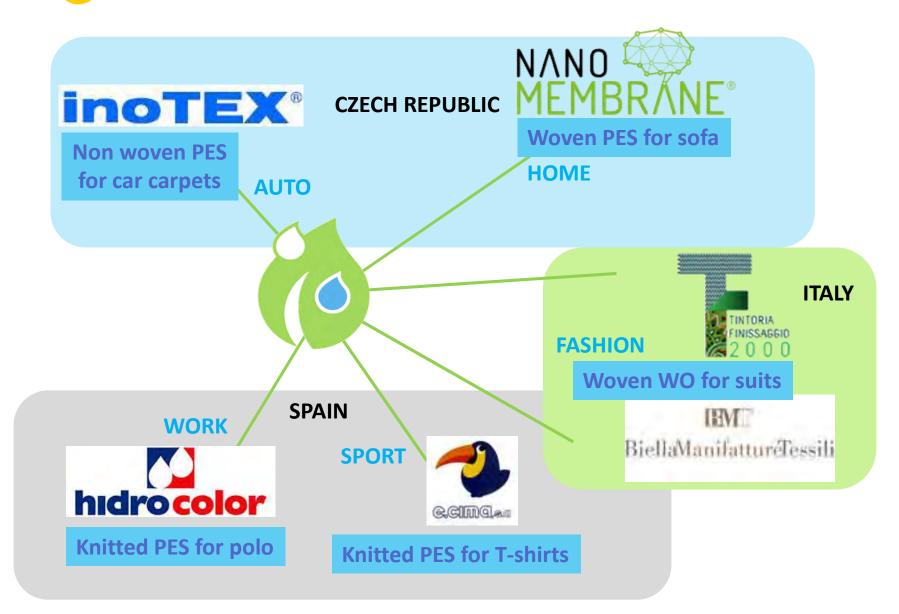


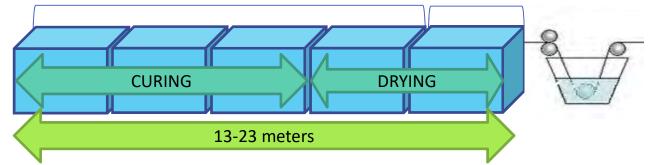
C6



Fluorinated-DWORs

Side-chain fluorinated polymers based on C8 or

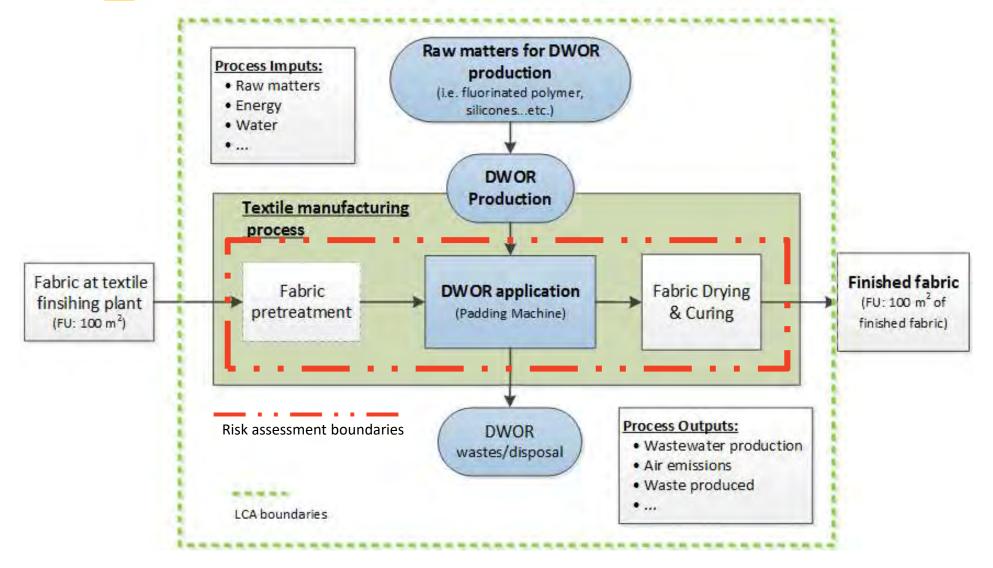

Polymer


Industrial demonstration partners

Industrial demonstration

Goals:

- Gather data for hazard exposure parameters
- Gather data for life
 cycle assessment and
 environmental impact
- Validate technical results of DWORs



LCA and Risk Assessments boundaries

Risk assessment methodology: Stoffenmanager

In **control banding**, the substance is initially assigned to a **hazard band**, using the hazard classification of the substance. Based on the occupational activity, the **substance properties** and **potential for exposure**, a exposure band is derived. Then, the **risk score** is calculated with the **priority bands** (high, moderate and low).

Company specific operating conditions determined (questionnaire, visual assessment, process used, safety measures...)

	Froduct specific finierent flazarus (18505, uatabases, etc.)						
Hazard Band Exposure Band		A	В	С	D	E	
	1	3	3	3	2	1	
	2	3	3	2	2	1	
	3	3	2	2	1	1	
	4	2	1	1	1	1	

Product specific inherent hazards (MSDS databases etc.)

Priority bands in the Stoffenmanager:

Hazard: A=lowest hazard and E= highest hazard.

Exposure: 1= lowest exposure and 4=highest exposure.

Overall result: 1= highest priority and 3=lowest priority.

Hazard band assignment

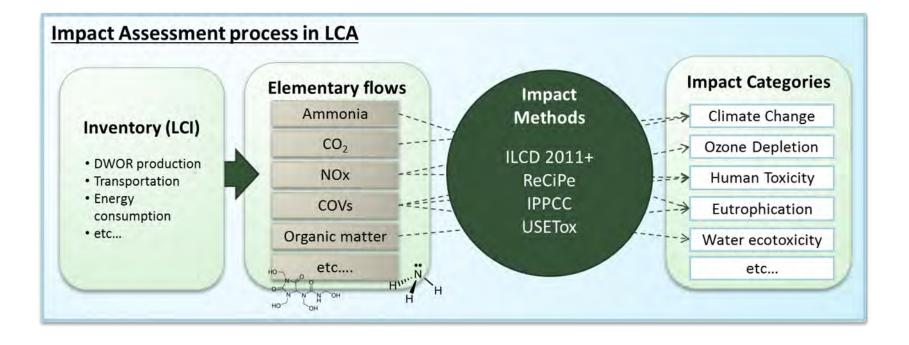
	Chemical family of active ingredient	Substance for the hazard assessment		Hazard profile of the Substance for Hazard Assessment	Stoffenmanager hazard band
	Polymer	PFOA		HARM. CLASS.*: Acute Tox. 4 (H302); Eye Dam. 1 (H318); Acute tox. 4 (H332); Carc. 2 (H351); Lact. (H362); STOT RE 1 (H372-liver); Repr. 1B (H360D)	D
based on C8		PF	os	HARM. CLASS.*: Acute Tox. 4 (H302); Acute tox. 4 (H332); Carc. 2 (H351); Lact. (H362); STOT RE 1 (H372); Repr. 1B (H360D)); Aquatic Chronic 2 (H411)	U
Fluorinated	Polymer based on C6	PFHxA		Majority of Notifications: Skin Corr. 1B (H314)	C
	PFSi based on C6	-	PFHxS	No notified classifications, but in SVHC Candidate List due to read-across with PFOS and other long-chained PFCAs.	L
ree	Silicone	e PDMS		Majority of Notifications: Not classified Other Notifications: Aquatic Chronic 4 (H413); Eye Irrit 2 (H319); Aquatic Chronic 2 (H411)	Α
Fluorine-free	Dendrimer	Dendrimer Dendrimer		SDS of the commercial product: Skin Irrit 2 (H315); Eye Irrit 2 (H319)	Α
Flu	Wax / Paraffin Wax / Paraffin		ax / Paraffin	Majority of Notifications: Not classified Other Notifications: Eye irrit. 2 (H319)	Α

Exposure-significant activities/tasks Professional use (service life) of textile products containing Industrial use of textile products **DWORs** Formulation of DWOR **DWOR** synthesis containing DWORs (application dispersion process by padding) Recycling and /or disposal of products containing DWORs **PROJECT SCOPE** Consumer use (service life) of textile products containing DWORs **inoTEX**[®] INTORIA hidro color INISSAGGIO 000 Activity /Task Contributing exposure **E.CIMA HIDROCOLOR TF2000 INOTEX Scenarios (CES)** Weighing Weighing Formulation of DWOR dispersion /Transfer to tank / /Transfer to tank / Mixing Mixing Filling finishing machine Impregnation treatment (padding application) including drying and Padding including drying and curing processes curing processes

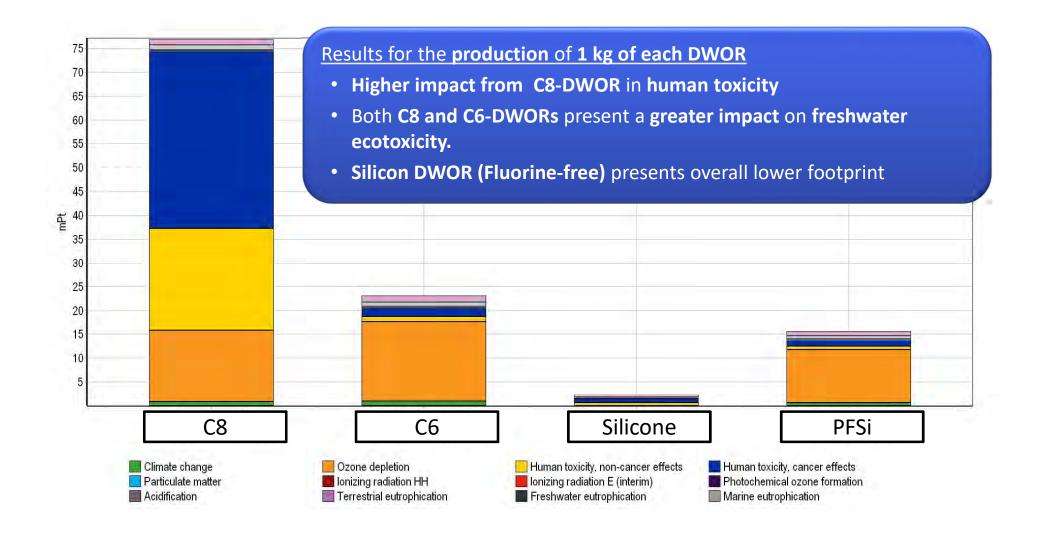
Hatched box indicated the activity is carried out for that process but is not considered exposure significant (confined automatic process)

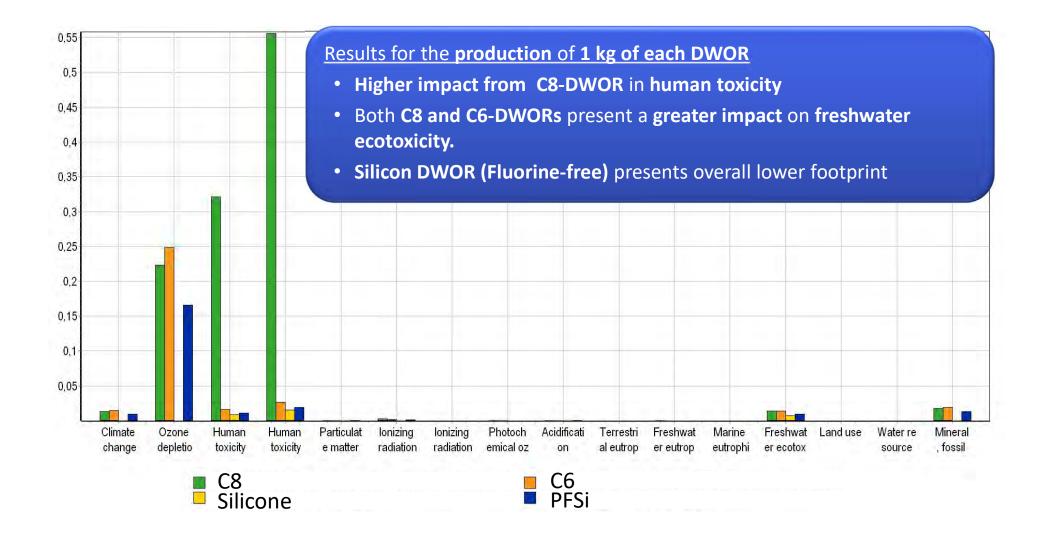
S

Risk assessment summary


Hazard Band Exposure Band	_*	Α	В	С	D	E
1	PFSi (less duration, frequency product use volume)	3	3 DENDRIMER	3	2 C8 (less duration, frequency product use volume)	1
2	PFSi (more duration, frequency product use volume)	3	3	2	2 C8 (more duration, frequency product use volume)	1
3		3	2	2	1	1
4		2	1	1	1	1

* No CLP hazard classification


Environmental impact: LCA


Environmental impact: LCA

Environmental impact: LCA

			AUTO	SPORT / WORK	HOME	FASHION
AATCC 22, UNE EN ISO 4920			Polyester nonwoven	Polyester knitted	Polyester woven	Wool woven
		C8	3,5	4,5	5	3
Water repellency	PFCs	C6	5	4,5	3	3
		PFSi	2,5	4,5	4,5	not tested
	ee	Silicone	3	2	not tested	not tested
		Dendrimer	2,5	4,5	2,5	2
	F-fr	Paraffin	2	0,5	2,5	2,5
		Alkyl urethane	2	2	4,5	not tested

AATCC 118, UNE EN ISO 14419			Polyester nonwoven	Polyester knitted	Polyester woven	Wool woven
_	PFCs	C8	8	5,5	6,5	0
		C6	6,5	5,5	2	2,5
nc		PFSi	6,5	5	6	not tested
Oil	e	Silicone	0	0	not tested	not tested
Oil repellency		e e	Dendrimer	0	0	0
	F-fr	Paraffin	0	0	0	0
		Alkyl urethane	0	0	0	not tested
			Unwashed	10 washing cycles + ironing	10 washing cycles + ironing*	1 dry cleaning cycle + ironing

Summary and conclusions

- There is **NO easy drop-in substitute DWOR**
- Case-by-case studies are needed to evaluate if oil repellency is actually required
- The finishing product selection should be done according to the final application (fashion, workwear, sport, upholstery, automotive...).
- Fluorine-free durable water repellents are available and demonstrated technically: dendrimers and silicone
- Environmental and occupational safety impact is diminished for fluorinefree products

Open questions / recommendations

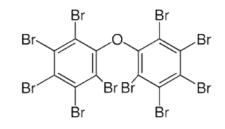
Need to evaluate whether **oil repellency** is actually **required**

- Substitution should follow a case-by-case review. For example:
 - Sersonal protective equipment for oil rigs needs oil repellency and only currently available solutions are fluorinated compounds (PFSi / C6).
 Fluorinated C6 chemistry should not be banned as no fluorine-free substitute has been identified yet providing oil repellency
 - Soes fashion clothing actually need oil repellency? Water repellency is not enough? Fluorine-free solutions are available for water repellency. Industry might focus on these alternatives providing only water repellency to mitigate the environmental impact

Mitigation of environmental impact caused by Flame Retardant textile finishing chemicals

SOURCES: EPA, Tribune reporting

KATIE NIELAND/TRIBUNE



Flame retardants are needed

Some flame retardants are HARMFUL!

Others are UNCLEAR yet

We are committed to a safer and more sustainable world

PROJECT TARGET

>20% reduction

of tonnage use of **harmful** flame retardant compounds

PROJECT CONSORTIUM

PROJECT OBJECTIVES

 To apply the substitution principle to FR chemicals

 To demonstrate and evaluate suitable FR alternatives

To encourage the substitution

WHAT THE PROJECT IS AND IS NOT

• <u>R&D project</u>

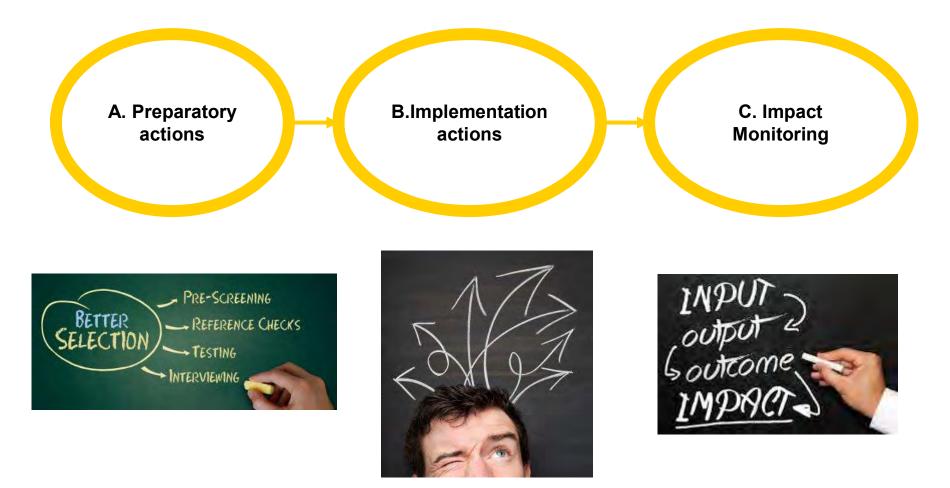
We will not develop new FR We are not your competitors

Promoting any ban

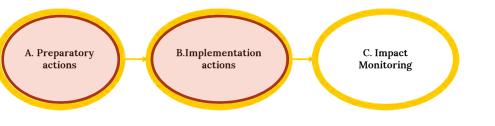
We are not fighting anyone

<u>Demonstration and validation</u> project

We will evaluate solutions in the market or close to market


• Promoting green solutions

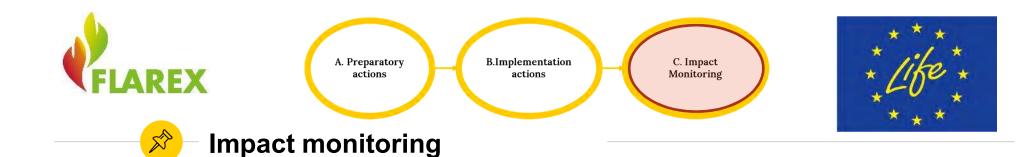
We want to support greener solutions substitution



PROJECT STEPS

Preparatory and implementation actions

Selection of FRs and fabrics


With the participation of industrial SME several FRs and alternatives will be selected for pre-screening of functionality and environmental impact on several fabrics

Industrial demonstration

Material processing will be tested using the selected FRs under pre-industrial and industrial conditions involving manufacturing SMEs through workshops and on-site pilots

Selection of textiles and finishing, demonstration of alternative FR and workshops, risk assessment, LCA & roadmap

•Risk assesment

Exposure Toxicity Environmental assessment Life-cycle assessment

Monitoring

Environmnetal impact Socioeconomic impact Stakeholder engagement

Recommendations

Best practices Policy recommendations REACH annexes proposals

Policy recommendations, impact monitoring on environmental, socio-economic and cost efficient replicability

Lets work together

for a safer and greener future

Grazie per l'attenzione

Contatti per approfondimenti:

paola.fontana@cittastudi.org

www.life-flarex.eu info@life-flarex.eu

www.midwor-life.eu info@midwor-life.eu

